精英家教网 > 初中数学 > 题目详情
已知:AB∥CD,OE平分∠AOD,OF⊥OE于O,∠D=60°,求∠BOF的度数.
解:∵AB∥CD,
∴∠AOD=180°﹣∠D=180°﹣60°=120°,
∠BOD=∠D=60°,
∵OE平分∠AOD,
∴∠EOD=120÷2=60°,
∵OF⊥OE,
∴∠DOF=90°﹣60°=30°,
∴∠BOF=∠BOD﹣∠DOF=60 °﹣30 °=30 °.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,已知直线AB∥CD,∠DCF=110°,且AE=AF,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD与直线EF分别交于E、F点,已知:AB∥CD,∠EFD的平分线FG交AB于点G,∠1=60°15′,则∠2=
59.5
59.5
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:AB∥CD,
求证:∠ABE+∠BED+∠EDC=360°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F 
证明:∵∠BAP+∠APD=180°,(已知)
∴AB∥CD.(
同旁内角互补,两直线平行
同旁内角互补,两直线平行

∴∠BAP=∠APC.(
两直线平行,内错角相等
两直线平行,内错角相等

∵∠1=∠2,(已知)
∴∠BAP-∠1=∠APC-∠2.(等式的性质)
即∠EAP=∠EPA
∴AE∥PF.(
内错角相等,两直线平行
内错角相等,两直线平行

∴∠E=∠F.(
两直线平行,内错角相等
两直线平行,内错角相等

查看答案和解析>>

同步练习册答案