解:(1)AF=BD;证明如下:
∵△ABC是等边三角形(已知),
∴BC=AC,∠BCA=60°(等边三角形的性质);同理知,DC=CF,∠DCF=60°;
∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF;
在△BCD和△ACF中,
,
∴△BCD≌△ACF(SAS),
∴BD=AF(全等三角形的对应边相等);
(2)证明过程同(1),证得△BCD≌△ACF(SAS),则AF=BD(全等三角形的对应边相等),
所以,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,AF=BD仍然成立;
(3)Ⅰ.AF+BF′=AB;证明如下:
由(1)知,△BCD≌△ACF(SAS),则BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;
证明如下:在△BCF?和△ACD中,
,
∴△BCF′≌△ACD(SAS),
∴BF′=AD(全等三角形的对应边相等);
又由(2)知,AF=BD;
∴AF=BD=AB+AD=AB+BF′,
即AF=AB+BF′。
科目:初中数学 来源: 题型:
| AD |
| AB |
| AD |
| AB |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012年九年级上学期月考数学卷 题型:解答题
(1)操作发现:
如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com