如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.
|
解:(1)A(1,4).1分 由题意知,可设抛物线解析式为y=a(x-1)2+4 因抛物线过点C(3,0), ∴0=a(3-1)2+4 ∴a=-1 所以抛物线的解析式为y=-(x-1)2+4, 即y=-x2+2x+3;2分 (2)∵A(1,4),C(3,0), ∴可求直线AC的解析式为y=-2x+6. 点P(1,4-t).3分 将y=4-t代入y=-2x+6中,解得点E的横坐标为x=1+ ∴点G的横坐标为1+t/2,代入抛物线的解析式中,可求点G的纵坐标为4-t2/4. ∴GE=(4- 又点A到GE的距离为t/2,C到GE的距离为2-t/2, 即S△ACG=S△AEG+S△CEG=1/2·EG·t/2+1/2·EG(2-t/2) = 当t=2时,S△ACG的最大值为1;8分 (3)t= (说明:每值各占2分,多出的值未舍去,每个扣1分)
|
科目:初中数学 来源: 题型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com