精英家教网 > 初中数学 > 题目详情

已知方程数学公式解为k,求代数式(数学公式+1)(数学公式-1)的值.

解:=1-
变形得:=1+
去分母得:3-x=x-4+1,
移项得:-2x=-4+1-3,即-2x=-6,
解得:x=3,
经检验x=3是原方程的解,
∴k=3,
则(+1)(-1)=k-1=3-1=2.
分析:将已知分式方程右边第二项提取-1,分母变形为x-4,方程左右两边都乘以x-4,去分母后得到一个一元一次方程,求出一次方程的解得到x的值,即为k的值,将k的值代入所求式子,利用平方差公式计算,即可得到结果.
点评:此题考查了二次根式的化简,以及分式方程的解法,利用了平方差公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化简,得y2+2y-4=0
故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:
 

(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x.
所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-3=0,化简,得y2+2y-12=0.
故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:问题:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍
解:设所求方程的根为y,则y=2x,
所以x=
y
2

把x=
y
2
代入已知方程,得
(
y
2
)2+
y
2
-3=0

化简,得y2+2y-12=0故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
(1)已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍,则所求方程为
y2+3y-9=0
y2+3y-9=0

(2)已知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数;
(3)已知关于x的方程x2-mx+n=0有两个实数根,求一个方程,使它的根分别是已知方程根的平方.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

【阅读理解】问题:已知方程x2+2x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+2×
y
2
-3=0.
化简得y2+4y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
【解决问题】请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+2x-3=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为
y2-2y-3=0
y2-2y-3=0

(2)已知关于x的方程x2+nx+m=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(贵州黔西南卷)数学(解析版) 题型:解答题

问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍。

解:设所求方程的根为y,则y=2x,所以

代入已知方程,得

化简,得:

故所求方程为

这种利用方程根的代换求新方程的方法,我们称为“换根法”。请阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式)

(1)已知方程,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:

          

(2)已知关于x的一元二次方程有两个不等于零的实数根,求一个一元二方程,使它的根分别是已知方程的倒数。

 

查看答案和解析>>

同步练习册答案