精英家教网 > 初中数学 > 题目详情

正方形ABCD中,E为AB上一点,F为CB延长线上一点,且∠EFB=45°.
(1)求证:AF=CE;
(2)你认为AF与CE有怎样的位置关系?说明理由.

(1)证明:∵正方形ABCD,
∴AB=BC,∠ABC=90°,
∴∠EBF=90°,
∵∠EFB=45°,
∴∠EFB=∠FEB=45°,
∴EB=EF,
在△CBE和△ABF中,
∴△CBE≌△ABF,
∴AF=CE.

(2)AF⊥CE,
证明如下:延长CE交AF于G,
由(1)得△CBE≌△ABF,
∴∠BEC=∠AFB,
又∵∠ABC=90°,
∴∠BEC+∠ECB=90°,
∴∠AFB+∠ECB=90°,
又∵∠AFB+∠ECB+∠CGF=180°,
∴∠CGF=90°,
∴AF⊥CE.
分析:(1)在正方形ABCD中,AB=BC,∠ABC=90°可得∠EBF=90°,证明△CBE≌△ABF即可得出结论.
(2)作辅助线:延长CE交AF于G,根据思路:证明∠CGF=90°即可得出结论,所以证明∠CGF=90°即可.
点评:本题考查了正方形的性质及全等三角形的判定与性质,难度适中,关键掌握全等三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在正方形ABCD中,M为AD中点,N为CD中点,试求tan∠MBN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在边长为1的正方形ABCD中,点M、N、O、P分别在边AB、BC、CD、DA上.如果AM=BM,DP=3AP,则MN+NO+OP的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,画2个半径为a的四分之一圆,用代数式表示阴影部分的面积为
2a2-
1
2
πa2
2a2-
1
2
πa2
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,AB=4,E在BC边上,BE=1,F是AC上一动点,则EF+BF的最小值是
5
5

查看答案和解析>>

同步练习册答案