精英家教网 > 初中数学 > 题目详情

直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线数学公式(x<0)交于点A(-1,n).
(1)求直线与双曲线的解析式.
(2)连接OA,求∠OAB的正弦值.
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.

解:(1)∵直线y=x+b与x轴交于点C(4,0),
∴把点C(4,0)代入y=x+b得:b=-4,
∴直线的解析式是:y=x-4;
∵直线也过A点,
∴把A点代入y=x-4得到:n=-5
∴A(-1,-5),
把将A点代入(x<0)得:m=5,
∴双曲线的解析式是:y=

(2)过点O作OM⊥AC于点M,
∵B点经过y轴,
∴x=0,
∴0-4=y,
∴y=4,
∴B(0,-4),
AO==
∵OC=OB=4,
∴△OCB是等腰三角形,
∴∠OBC=∠OCB=45°,
∴在△OMB中 sin45°==
∴OM=2
∴在△AOM中,
sin∠OAB==

(3)存在;
过点A作AN⊥y轴,垂足为点N,
则AN=1,BN=1,
则AB==
∵OB=OC=4,
∴BC==4
∠OBC=∠OCB=45°,
∴∠OBA=∠BCD=135°,
∴△OBA∽△BCD或△OBA∽△DCB,
==
==
∴CD=2或CD=16,
∴点D的坐标是(6,0)或(20,0).
分析:(1)把点C的坐标代入y=x+b,求出b的值,得出直线的解析式;把点A(-1,n)代入y=x-4得到n的值,求出A点的坐标,再把将A点代入(x<0)中,求出m的值,从而得出双曲线的解析式;
(2)先过点O作OM⊥AC于点M,根据B点经过y轴,求出B点的坐标,根据勾股定理求出AO的值,根据OC=OB=4,得出△OCB是等腰三角形,求出∠OBC=∠OCB的度数,再在△OMB中,根据正弦定理求出OM的值,从而得出∠OAB的正弦值.
(3)先过点A作AN⊥y轴,垂足为点N,根据AN=1,BN=1,求出AB的值,根据OB=OC=4,求出BC的值,再根据∠OBC=∠OCB=45°,得出∠OBA=∠BCD,从而得出△OBA∽△BCD或△OBA∽△DCB,最后根据==,再代入求出CD的长,即可得出答案.
点评:此题考查了反比例函数的综合,用到的知识点是勾股定理、相似三角形的判断与性质,特殊角的三角函数值,关键是根据题意作出辅助线,求出线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y=
12
x+b
与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O是坐标原点,直线y=-
3
4
x+9
与x轴,y轴分别交于B,C两点,抛物线y=-
1
4
x2+bx+c
经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.
(1)求抛物线的解析式及点A的坐标;
(2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由.
(3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒
3
10
5
个单位长度的速度向点A运动,运动时间和点P相同.
①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?
②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•兰州)如图,M为双曲线y=
3
x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宛城区一模)如图,直线y=-2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=
kx
在第一象限经过点D.则k=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•荆州模拟)已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0的解集是(  )

查看答案和解析>>

同步练习册答案