精英家教网 > 初中数学 > 题目详情
如图所示,∠AOB=90°,O为的中点,且C、D是的三等分点,AB分别交OC,OD于点E,F.
求证:AE=BF=CD.

【答案】分析:由于C、D是弧AB的三等分点,易得∠AOC=∠DOB,又OA=OB=OC,易证得△AOC≌△OCD,可得∠ACO=∠OCD,易知∠AEC=∠OCD,因此∠ACO=∠AEC,即AC=AE=BF.
解答:证明:∵O为的中点,
∴OA=OB,
∴点O为所在圆的圆心,
连接AC、BD,则有AC=CD=BD,
∵∠AOC=∠COD,OA=OC=OD,
∴△ACO≌△DCO.
∴∠ACO=∠OCD.
∵∠OEF=∠OAE+∠AOE=45°+30°=75°,∠OCD==75°,
∴∠OEF=∠OCD,
∴CD∥AB,
∴∠AEC=∠OCD,
∴∠ACO=∠AEC.
故AC=AE,
同理,BF=BD.
又∵AC=CD=BD
∴AE=CD=BF.
点评:本题主要考查了全等三角形的判定和性质、圆周角定理、等腰三角形的性质等知识的综合应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.
(1)已知∠AOC=30°,∠BOD=60°,求∠MON的度数;
(2)如果只已知“∠COD=90°”,你能求出∠MON的度数吗?如果能,请求出;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

74、如图所示,∠AOB=70°,∠COD=80°,求∠AOD-∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△AOB为正三角形,点A、B的坐标分别为A(2,a),B(b,0),求a,b的值及△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邵东县模拟)在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD;
(2)求OC的长;
(3)求过A、D两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于点D,PE⊥OA于点E,若PE=2cm,则PD=
4
4
cm.

查看答案和解析>>

同步练习册答案