精英家教网 > 初中数学 > 题目详情

如图所示,有两个正方形花坛,准备把每个花坛都分割成形状相同的四块,种植不同的花草.下面左边的两个图案是设计示例,请你在右边的两个正方形中再设计两个不同的图案.

答案:
解析:

  解:如图所示.

  说明:本题是利用轴对称的性质设计图案的实际应用题,主要考查学生分析、解决实际问题的能力.


提示:

提示:发挥想像,按要求设计图案.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

1、(1)如图,平面内两条互相
垂直
并且原点
重合
数轴
组成平面直角坐标系.其中,水平的数轴称为
x轴
横轴
,习惯上取
向右方向
为正方向;竖直的数轴称为
y轴
纵轴
,取
向上方向
为正方向;两坐标轴的交点叫做平面直角坐标系的
原点
.直角坐标系所在的
平面
叫做坐标平面.

(2)有了平面直角坐标系,平面内的点就可以用一个
有序数对
来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做
A点的坐标
.其中,a叫做A点的
横坐标
;b叫做A点的
纵坐标

(3)建立了平面直角坐标系以后,坐标平面就被
两条坐标轴
分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做
第一象限
第二象限
第三象限
第四象限
.注意
坐标轴上的点
不属于任何象限.

(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0”分别填写)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为
7
7
.最短路线有
7
7
条;
②与原点O的“出租车距离”等于30的路口共有
120
120
个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有
780
780
条.

查看答案和解析>>

科目:初中数学 来源:2014届江苏泰兴济川中学七年级上期期末考试数学试卷(解析版) 题型:解答题

在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示。

(1) 请画出这个几何体的三视图。

 

 

 

 

      主视图               左视图               俯视图

(2) 如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有      个正方体只有一个面是黄

色,有      个正方体只有两个面是黄色,有      个正方体只有三个面是黄色。

(3) 若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方

体?

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)如图,平面内两条互相______并且原点______的______组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.

(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.
(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.

(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0”分别填写)

查看答案和解析>>

科目:初中数学 来源:2009年安徽省合肥市一中高一自主招生考试数学试卷(解析版) 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

同步练习册答案