精英家教网 > 初中数学 > 题目详情
判断:三角形的中线小于任何一个边.   

 

答案:F
提示:

这是不一定的,可以通过画图进行简单论证

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:
(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;
(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;
(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.
我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立,若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县一模)【典型练习】如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(无需证明)
【拓展变式】小明很顺利的完成了上面的练习后,又进一步对该命题进行了发散思维,把原命题中的一些条件进行了变换,得到了如下三个不同的命题:
(1)如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.
(2)如果两个三角形有两条边和第三边上的高对应相等,那么这两个三角形全等.
(3)如果两个三角形有两条边和夹角的平分线对应相等,那么这两个三角形全等.
【探索新知】小明对这三个命题,无法判断其命题的真假,于是他向老师求教.数学老师对命题(1)做出了一些指导,请你帮助小明完成下面的解答过程.
已知:如图,AB=A′B′,AD=A′D′,AD是BC边上的中线,A′D′是B′C′边上的中线,求证:△ABC≌△A′B′C′,
证明:如图,延长AD至E使AD=DE,连接BE,延长A′D′至E′使A′D′=D′E′,连接B′E′.
【合作学习】对于命题(2)、(3),你能帮助小明判断命题的真假吗?如果是真命题,请给完整的证明,如果是假命题,在下面的空白处做出解答.(要求:画出图形,说明理由.)

查看答案和解析>>

科目:初中数学 来源: 题型:

小明在证明“等腰三角形底边上的高线、底边上的中线和顶角的平分线互相重合”这一命题时,画出图形,写出“已知”、“求证”(如图).
(1)请你帮助小明完成证明过程.
(2)请你作出判断:小明写出的“已知”、“求证”是否完整?在横线上填“是”或“否”.

(3)做完(1)后,小明模仿老师上课时的方法,又提出了如下几个问题:
如:①若将题中“AD⊥BC”与“AD平分∠ABC”的位置交换,得到的是否仍是真命题?
②若将题中“AD⊥BC”与“BD=CD”的位置交换,得到的是否仍是真命题?请你作出判断,在下列横线上填写“是”或“否”:①
 ②
 并对②的判断作出证明.(若是则写出证明过程;若不是则举出一个反例)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•山西)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)

依据2:
角平分线上的点到角的两边的距离相等
角平分线上的点到角的两边的距离相等

(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源:同步练习数学  九年级上册 题型:008

判断对错

三角形的一条中线把三角形分成的两个小三角形全等.

(  )

查看答案和解析>>

同步练习册答案