精英家教网 > 初中数学 > 题目详情
如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.
(1)判断直线AG与⊙O的位置关系,并说明理由.
(2)求线段AF的长.
解:(1)直线AG与⊙O的位置关系是AG与⊙O相切,
理由是:连接OA,
∵点A,E是半圆周上的三等分点,
∴弧AB=弧AE=弧EC,
∴点A是弧BE的中点,
∴OA⊥BE,
又∵AG∥BE,
∴OA⊥AG,
∴AG与⊙O相切.
(2)∵点A,E是半圆周上的三等分点,
∴∠AOB=∠AOE=∠EOC=60°,
又∵OA=OB,
∴△ABO为正三角形,
又∵AD⊥OB,OB=1,
∴BD=OD=,AD=
又∵∠EBC=∠EOC=30°,
在Rt△FBD中,FD=BDtan∠EBC=BDtan30°=
∴AF=AD﹣DF==
答:AF的长是


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•德州)如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.
(1)判断直线AG与⊙O的位置关系,并说明理由.
(2)求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D,C是半圆周上的三等分点,直径AB=4,过P作PC∥BD交AB的延长线于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由.
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(山东德州卷)数学(带解析) 题型:解答题

如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.
(1)判断直线AG与⊙O的位置关系,并说明理由.
(2)求线段AF的长.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(山东德州卷)数学(解析版) 题型:解答题

如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.

(1)判断直线AG与⊙O的位置关系,并说明理由.

(2)求线段AF的长.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点AE是半圆周上的三等分点,直径BC=2,,垂足为D,连接BEADF,过ABEBCG

(1)判断直线AG与⊙O的位置关系,并说明理由.

(2)求线段AF的长.


查看答案和解析>>

同步练习册答案