精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AB∥CD,∠A=90°,AC⊥BC,
(1)求证:△ADC∽△BCA;
(2)若AB=9,CD=4,求AC的长.

(1)证明:∵在梯形ABCD中,AB∥CD,∠DAB=90°,
∴∠ACD=∠BAC,∠D=180°-∠DAB=90°,
∵AC⊥BC,
∴∠ACB=90°,
∴∠ACB=∠D,
∴△ADC∽△BCA;

(2)解:∵△ADC∽△BCA;

∴AC2=AB•CD,
∵AB=9,CD=4,
∴AC2=9×4=36,
∴AC=6.
分析:(1)由在梯形ABCD中,AB∥CD,∠A=90°,AC⊥BC,根据平行线的性质,易证得∠ACD=∠BAC,∠ACB=∠D=90°,然继而可证得:△ADC∽△BCA;
(2)由△ADC∽△BCA,根据相似三角形对应边成比例,即可求得AC的长.
点评:此题考查了相似三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案