精英家教网 > 初中数学 > 题目详情

已知:正方形ABCD中,E,F分别是边CD,DA上的点,且CE=DF,AE与BF交于点M.
(1)求证:△ABF≌△DAE;
(2)判断AE与BF的数量关系和位置关系(不必说明理由).

(1)证明:∵四边形ABCD是正方形,
∴∠BAD=∠ADE=90°,AD=AB=DC,
∵DF=CE,
∴AF=DE,
∵在△ABF和△DAE中,

∴△ABF≌△DAE(SAS);

(2)解:AE=BF,AE⊥BF,
理由是:∵△ABF≌△DAE,
∴AE=BF,∠AFB=∠DEA,
∵∠D=90°,
∴∠DEA+∠DAE=90°,
∴∠AFB+∠DAE=90°,
∴∠AMF=180°-90°=90°,
∴AE⊥BF.
分析:(1)根据正方形性质得出∠BAD=∠ADE=90°,AD=AB=DC,求出AF=DE,根据SAS推出两三角形全等即可;
(2)根据三角形全等得出AE=BF,∠AFB=∠DEA,求出∠AFB+∠DAE=90°,求出∠AMF=90°,根据垂直定义得出即可.
点评:本题考查了三角形的内角和定理,垂直定义,正方形性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、(1)如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE的平分线于N.试判定线段MD与MN的大小关系;
(2)若将上述条件中的“M是AB的中点”改为“M是AB上或AB延长线上任意一点”,其余条件不变.试问(1)中的结论还成立吗?如果成立,请证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:正方形ABCD边长为4cm,E,F分别为CD,BC的中点,动点P在线段AB上从B?A以2cm/精英家教网s的速度运动,同时动点Q在线段FC上从F?C以1cm/s的速度运动,动点G在PC上,且∠EGC=∠EQC,连接PD.设运动时间为t秒.
(1)求证:△CQE∽△APD;
(2)问:在运动过程中CG•CP的值是否发生改变?如果不变,请求这个值;若改变,请说明理由;
(3)当t为何值时,△CGE为等腰三角形并求出此时△CGE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,已知在正方形ABCD中,P是BC上的一点,且AP=DP.求证:P是BC中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
6
.下列结论:
①△APD≌△AEB﹔②点B到直线AE的距离为
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案