精英家教网 > 初中数学 > 题目详情
4.根据下列要求画图.
(1)如图①,过点A画BC边上的垂线段AD,并量出其长度;
(2)如图②,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB的延长线交于点F.△CEF由哪一个三角形平移得到?

分析 (1)过点A画AD⊥BC于D,并测量AD的长;
(2)过点C画CE∥AB,画CF∥BD,相当于△DAB向右平移CD的长度得到△CEF.

解答 解:(1)如图,AD为所作,AD=2cm;

(2)如图,△CEF由△DAB平移得到.

点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平移的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.某考古队在一个土坡下发现一个古墓,位置在如图的C点,为了确定古墓C的正确位置,队员小王想出了如下方法:
首先测量出土坡两侧AB相距35米,然后分别从A、B两点进行探测,探测线与地面的夹角分别是22°和45°(如图),最后根据三角形相关知识,小王很快就得到了古墓所在点C到地面的距离,请你结合小王的测量方案计算这一距离.(参考数据:sin22°≈0.37;cos22°≈0.93,tan22°≈0.40)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在条件:①∠5=∠6,②∠7=∠2,③∠3+∠8=180°,④∠3=∠2,⑤∠4+∠1=180°中,能判定a∥b的条件有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,点C将线段AB分成两部分,如果$\frac{AC}{AB}$=$\frac{BC}{AC}$,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为s的图形分成两部分,这两部分的面积分别为S1,S2,如果$\frac{{s}_{1}}{s}$=$\frac{{s}_{2}}{{s}_{1}}$,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在三角形ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是三角形ABC 的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形ABC的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D(D为AB边上的黄金分割点)作直线DF,且DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是三角形ABC的黄金分割线.
请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF平行AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,正方形ABCD的边长为6,E为BC上的一点,BE=2,F为AB上的一点,AF=3,P为AC上一点,则PF+PE的最小值为$\sqrt{37}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在四边形的4个内角中,钝角的个数最多为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.你能求(x-1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:
①(x-1)(x+1)=x2-1;
②(x-1)(x2+x+1)=x3-1;
③(x-1)(x3+x2+x+1)=x4-1;

由此我们可以得到:(x-1)(x99+x98+x97+…+x+1)=x100-1.
请你利用上面的结论,再完成下面两题的计算:
(1)(-2)50+(-2)49+(-2)48+…+(-2)+1.
(2)若x3+x2+x+1=0,求x2016的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,连接OH.
(1)求AD与DH的长;
(2)求证:∠HDO=∠DCO.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.若(x+3)(x+n)=x2+mx-15,则m的值为(  )
A.-5B.-2C.5D.2

查看答案和解析>>

同步练习册答案