解:(1)证明:∵AB=AC,
∴∠B=∠C,
∵△ABC≌△DEF,
∴∠AEF=∠B,
又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
∴∠CEM=∠BAE,
∴△ABE∽△ECM;
(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,
∴∠AME>∠AEF,
∴AE≠AM;
当AE=EM时,则△ABE≌△ECM,
∴CE=AB=5,
∴BE=BC﹣EC=6-5=1,
当AM=EM时,则∠MAE=∠MEA,
∴∠MAE+∠BAE=∠MEA+∠CEM,
即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴
,
∴CE=
,
∴BE=6-
=
;
(3)解:设BE=x,
又∵△ABE∽△ECM,
∴
,
即:
,
∴CM=-
+
x=-
(x-3)2+
,
∴AM=-5-CM=![]()
(x-3)2+
,
∴当x=3时,AM最短为
,
又∵当BE=x=3=
BC时,
∴点E为BC的中点,
∴AE⊥BC,
∴AE=
=4,
此时,EF⊥AC,
∴EM=
=
,
S△AEM=
。
科目:初中数学 来源: 题型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com