精英家教网 > 初中数学 > 题目详情
如图,在⊙O中,弦AE⊥弦 BC于D,BC=6,AD=7,∠BAC=45°.
(1)求⊙O的半径;
(2)求DE的长.
(1)解:连结OB,OC.


在Rt△BOC中,有,且OC=OB.
  ∴BC=6,
∴.  
 即⊙O的半径为
(2)解:过O作于M,于N,
可得AM=ME,
易知四边形OMDN是矩形.
得 MD=ON=3 .
∴ AM=7-3=4=ME.
∴.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,在⊙O中,弦BC∥半径OA,AC与OB相交于M,∠C=20°,则∠AMB的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙M中,弦AB所对的圆心角为120度,已知圆的半径为2cm,并建立如图所示的直角坐精英家教网标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)设点P是⊙M上的一个动点,当△PAB为Rt△PAB时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB=BC=CD,且∠ABC=140°,则∠AED=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC∽△PDB;
(2)当
AC
DB
为何值时,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步练习册答案