精英家教网 > 初中数学 > 题目详情

如图,DE是△ABC的中位线,FG是梯形DBCE的中位线,若FG=6,则BC=________.

8
分析:首先根据梯形的中位线定理得到梯形DBCE的两底的和,然后根据三角形中位线定理求得线段BC的长.
解答:∵FG是梯形DBCE的中位线,
∴DE+BC=2FG=2×6=12,
∵DE是△ABC的中位线,
∴DE=BC,
∴DE+BC=BC+BC=BC=12,
解得:BC=8,
故答案为:8.
点评:综合考查了三角形的中位线定理及梯形的中位线定理,解题的关键是利用三角形的中位线定理用三角形的中位线表示出三角形的底边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,DE是△ABC的中位线,若AD=4,AE=5,BC=12,则△ADE的周长为(  )
A、7.5B、15C、30D、24

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,DE是△ABC的中位线,若BC=6,则DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,DE是△ABC的中位线,则△ADE和四边形BCED的面积之比为(  )
A、1:2B、1:3C、1:4D、以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,DE是△ABC的中位线,FG是梯形BCED的中位线,若BC=16cm,则FG的长是(  )
A、6B、8C、10D、12

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,DE是△ABC的中位线,点P是DE的中点,CP的延长线交AB于点Q,那么S△DPQ:S△ABC=
1:24

查看答案和解析>>

同步练习册答案