精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠BAC=75°,AD、BE分别是BC、AC边上的高,AD=BD,求∠C和∠AFB的度数.

解:(1)在△ABC中,AD、BE分别是BC、AC边上的高,
∴∠ADB=∠ADC=∠BEC=90°.
∵AD=BD,
∴∠ABD=∠BAD=45°.
在△ABC中,∠BAC=75°,
∴∠C=180°-(∠ABD+∠BAC)
=180°-(45°+75°)=60°.

(2)在四边形DCEF中,
∵∠DFE=360°-(∠ADC+∠BEC+∠C)=360°-(90°+90°+60°)=120°.
∴∠AFB=∠DFE=120°.
分析:(1)首先计算出∠ABD=∠BAD=45°,再根据三角形内角和定理计算出∠C的度数即可;
(2)利用四边形内角和为360度可以算出∠DFE,然后再根据对顶角相等计算出∠AFB的度数即可.
点评:此题主要考查了多边形内角和定理,以及三角形内角和,关键是掌握四边形内角和为360°,三角形内角和为180°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案