精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,AC=6,BC=8,以C为圆心的圆与AB相切,那么⊙C的半径为________.

4.8
分析:先根据题意画出图形,再结合切线的性质及勾股定理、三角形的面积公式解答.
解答:解:设以C为圆心的圆与AB相切于点D,
根据切线的性质知,CD是圆C的半径,也是直角三角形斜边上的高,
由勾股定理知,AB==10,S△ABC=AC•AB=AB•CD,
∴CD=4.8.
点评:本题利用了切线的性质和勾股定理、直角三角形的面积公式求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案