分析 根据题意得出抛物线解析式,进而表示出G点坐标,再利用2OF=FG,进而求出即可.
解答 解:∵正方形ABCD边长为4,
∴顶点坐标为:(0,4),B(2,0),
设抛物线解析式为:y=ax2+4,
将B点代入得,0=4a+4,
解得a=-1,
∴抛物线解析式为:y=-x2+4
设G点坐标为:(m,-m2+4),
则2m=-m2+4,
整理的:m2+2m-4=0,
解得:m1=-1+$\sqrt{5}$,a2=-1-$\sqrt{5}$(不合题意舍去),
∴正方形EFGH的边长FG=2m=2$\sqrt{5}$-2.
故答案为:2$\sqrt{5}$-2.
点评 此题主要考查了二次函数的综合应用以及一元二次方程的解法,根据正方形的性质以及抛物线上点的坐标性质得出等式是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| x | … | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
| y | … | 8 | 3 | 0 | -1 | 0 | m | 8 | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com