精英家教网 > 初中数学 > 题目详情

已知:?ABCD中,AC⊥CD,点E在射线CB上,点F在射线DC上,且∠EAF=∠B.
(1)当∠BAD=135°时,若点E在线段CB上,点F在线段DC上(如图1),求证:BE+数学公式DF=AD;
(2)当∠BAD=120°时,若点E在线段CB上,点F在线段DC上(如图2),则AD、BE、DF之间的数量关系是______;
(3)当∠BAD=120°时,连接EF,设直线AF、直线BC交于点Q,当AB=3,BE=2时,求EQ和EF的长.

解:(1)证明:∵∠BAD=135°,且∠BAC=90°,
∴∠CAD=45°,即△ABC、△ADC都是等腰直角三角形;
∴AD=AC,且∠D=∠ACB=45°;
又∵∠EAC=∠DAF=45°-∠FAC,
∴△AEC∽△AFD,
∴AE:AD=EC:FD=1:,即EC=FD;
∴BC=BE+DF,即BE+DF=AD.

(2)2BE+DF=AD;理由如下:
取BC的中点G,连接AG;
易知:∠DAC=∠BCA=30°,∠B=∠D=60°;
在Rt△ABC中,G是斜边BC的中点,则:
∠AGE=60°,AD=BC=2AG;
∵∠GAD=∠AGE=60°=∠EAF,
∴∠EAG=∠FAD=60°-∠GAF;
又∵∠AGE=∠D=60°,
∴△AGE∽△ADF,得:AG:AD=EG:FD=1:2;
即FD=2EG;
∴BC=2BG=2(BE+EG)=2BE+2EG=2BE+DF,即AD=2BE+DF.

(3)在Rt△ABC中,∠ACB=30°,AB=3,则BC=AD=6,EC=4.
①如图(2)①,过F作FH⊥BQ于H;
同(2)可知:DF=2EG=2,CF=CD-DF=1;
在Rt△CFH中,∠FCH=60°,则:
CH=,FH=
易知:△ADF∽△QCF,由DF=2CF,可得CQ=AD=3;
∴EQ=EC+CQ=4+3=7;
在Rt△EFH中,EH=EC+CH=,FH=
由勾股定理可求得:EF=
②如图(2)②;
∵∠EAF=∠GAD=60°,
∴∠EAG=∠FAD=60°+∠FAG,
又∵∠EGA=∠D=60°,
∴△EAG∽△FAD,得:EG:FD=AG:AD=1:2;
即FD=2EG=10,FC=10-CD=7;
在Rt△FCN中,∠FCN=60°,
易求得FN=,NC=,GN=
在等边△ABG中,AM⊥BG,易求得AM=,MG=,MN=MG-GN=1;
由于△AMQ∽△FNQ,得:AM:FN=MQ:NQ=3:7,即QN=,MQ=
EQ=EB+BM+MQ=2++=
Rt△EFN中,EN=EG-NG=5-=,FN=
由勾股定理,得:EF=
综上可知:EQ=7或,EF=
分析:(1)此题要通过相似三角形求解;根据∠EAF=∠CAD=45°,可证得∠EAC=∠FAD,而∠ACB=∠D=45°,即可得△AEC∽△AFD,根据AC、AD的比例关系,即可得EC、FD的比例关系,由此得解.
(2)按照(1)的思路,此题要构造相似三角形来求解;取BC的中点G,连接AG;首先通过证△AGC∽△AFD来得到EG、FD的比例关系,然后根据BC=2(BE+EG)求得BE、CF、AD的等量关系式.
(3)此题应分两种情况:
①如(2),点E、F分别在线段BC、CD上;过F作FH⊥BQ于H,由(2)的相似三角形易得FD=2EG=2,那么CF=1,在Rt△CFH中,即可求出FH、CH的值;进而可由勾股定理求得EF的长;由相似三角形△ADF∽△QCF易得CQ的长,即可求出EQ的值;
②点E、Q分别在CB、DC的延长线上;分别过A、F作BC的垂线,设垂足为M、N;易求得AM、FN、BM、EN的长,进而可求出GM、MN的值,根据AM、FN的长,易求得△AMQ、FNQ的相似比,即可求出NQ、MQ的值,从而求得EQ、EF的长,由此得解.
点评:此题主要考查了平行四边形的性质、相似三角形的判定和性质以及勾股定理、直角三角形性质的综合应用,同时还涉及到分类讨论的数学思想,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:EG=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD中,AB=10,AD=4,点E为CD边上的一个动点,连接AE、BE,以AE为直径作圆,交AB于点F,过点F作FH⊥BE于H,直线FH交⊙O于点G.
(1)求证:⊙O必经过点D;
(2)若点E运动到CD的中点,试证明:此时FH为⊙O的切线;
(3)当点E运动到某处时,AE∥FH,求此时GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD中,AB=4,BC=8,连接BD,将△BCD沿着BD翻折,C点落在E点处,BE交AD于F点.
(1)证明:BF=DF;
(2)求出△BDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD中,对角线AC、BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P
(1)求证:OE=OF;
(2)写出线段EF、PC、BC之间的一个等量关系式,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,对角线AC、BD相交于O,腰BA、CD的延长线相交于M,图中相似三角形共有(  )

查看答案和解析>>

同步练习册答案