精英家教网 > 初中数学 > 题目详情

如图,矩形OABC中,A(6,0)、C(0,2数学公式)、D(0,3数学公式),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.
作业宝
(1)①点B的坐标是______;②∠CAO=______度;③当点Q与点A重合时,点P的坐标为______;(直接写出答案)
(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.
(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.

解:(1)①∵四边形OABC是矩形,
∴AB=OC,OA=BC,
∵A(6,0)、C(0,2),
∴点B的坐标为:(6,2);

②∵tan∠CAO===
∴∠CAO=30°;

③如下图:当点Q与点A重合时,过点P作PE⊥OA于E,
∵∠PQO=60°,D(0,3),
∴PE=3
∴AE==3,
∴OE=OA-AE=6-3=3,
∴点P的坐标为(3,3);

故答案为:①(6,2),②30,③(3,3);


(2)情况①:MN=AN=3,
则∠AMN=∠MAN=30°,
∴∠MNO=60°,
∵∠PQO=60°,
即∠MQO=60°,
∴点N与Q重合,
∴点P与D重合,
∴此时m=0,

情况②,如图AM=AN,作MJ⊥x轴、PI⊥x轴;
MJ=MQ•sin60°=AQ•sin60°=(OA-IQ-OI)•sin60°=(3-m)=AM=AN=
可得(3-m)=
解得:m=3-

情况③AM=NM,此时M的横坐标是4.5,
过点P作PK⊥OA于K,过点M作MG⊥OA于G,
∴MG=
∴QK===3,GQ==
∴KG=3-0.5=2.5,AG=AN=1.5,
∴OK=2,
∴m=2,


(3)当0≤x≤3时,
如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;
由题意可知直线l∥BC∥OA,
可得
EF=(3+x),
此时重叠部分是梯形,其面积为:
S梯形=(EF+OQ)•OC=(3+x),

当3<x≤5时,S=S梯形-S△HAQ=S梯形-AH•AQ=(3+x)-(x-3)2

当5<x≤9时,
∵BC∥PD,
∴△OCE∽△OPD,
∴CE:PD=2:3,
∴CE=x,
∴BE=BC-CE=6-x,
∴S=(BE+OA)•OC=(12-x),

当9<x时,S=OA•AH=

分析:(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;
(2)分别从MN=AN,AM=AN与AM=MN去分析求解即可求得答案;
(3)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.
点评:此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).
(1)直接写出B点坐标;
(2)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1:3两部分,求直线CD的解析式;
(3)在(2)的条件下,试问在坐标轴上是否存在点E,使以C、D、E为顶点的三角形与以B、C、D为顶点的三角形相似?若存在,请求出E点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,矩形OABC中,O是原点,OA=8,AB=6,则对角线AC和BO的交点H的坐标为
(4,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-
4
9
x2+bx+c经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线y=-
4
9
x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形?若存在,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宛城区一模)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-
4
9
x2+bx+c经过A,C两点,与AB边交于点D.

(Ⅰ)求抛物线的解析式;
(Ⅱ)动点P从C出发,沿线段CB向终点B运动,同时动点Q从A出发,沿线段AC向终点C运动,速度均为每秒1个单位长度,连接PQ,设运动时间为t秒,△CPQ的面积为S.
(1)求S关于t的函数表达式,并求出t为何值时,S取得最大值;
(2)当S最大时,从以下①,②中任选一题作答,若两题都做只以第①题计分.
①在抛物线y=-
4
9
x2+bx+c的对称轴l上,是否存在点F,使△FDQ为直角三角形?若存在,请直接写出所有符合条件的点F的坐标;否则请说明理由.
②在坐标平面内,是否存在点F,使以C,P,Q,F为顶点的四边形为平行四边形?若存在,请直接写出所有符合条件的点F的坐标;否则请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形OABC中,OA=2,OC=1,把矩形OABC放在数轴上,O在原点,OA在正半轴上,把矩形的对角线OB绕着原点O顺时针旋转到数轴上,点B的对应点为B′,则点B′表示的实数是(  )

查看答案和解析>>

同步练习册答案