精英家教网 > 初中数学 > 题目详情

如图,在半径为2的扇形AOB中,∠AOB=90°,点C是数学公式上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为D、E.则线段DE的长为________.


分析:连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC的中点,即ED为三角形ABC的中位线,由OA=OB=2,且∠AOB=90°,利用勾股定理求出AB的长,即可求出ED的长.
解答:解:连接AB,
∵OD⊥BC,OE⊥AC,
∴D、E分别为BC、AC的中点,
∴DE为△ABC的中位线,
∵OA=OB=2,∠AOB=90°,
∴根据勾股定理得:AB==2
则DE=AB=
故答案为:
点评:此题考查了垂径定理,勾股定理,以及三角形的中位线定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在一块五边形场地的五个角修建五个半径为2米的扇花台,那么五个花台的总面积是
 
平方米.(结果中保留π)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在一块四边形场地的四个角修建四个半径为2米的扇花台,那么四个花台的总面积是
平方米(结果中保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

有一批圆心角为90°,半径为1的扇形状下脚料,现利用这批材料截取尽可能大的正方形材料,如图有两种截取方法:方法1,如图(1)所示,正方形OPQR的顶点P、Q、R均在扇形边界上;方法2,如图(2)所示,正方形顶点C、D、E、F均在扇形边界上.图(1)、图(2)均为轴对称图形.试分别求这两种截取方法得到的正方形面积.并说明哪种截取方法得到的正方形面积更大?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,在一块五边形场地的五个角修建五个半径为2米的扇花台,那么五个花台的总面积是________平方米.(结果中保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,在一块四边形场地的四个角修建四个半径为2米的扇花台,那么四个花台的总面积是________平方米(结果中保留π).

查看答案和解析>>

同步练习册答案