精英家教网 > 初中数学 > 题目详情
若画平行四边形ABCD,使ÐB=45°AB=2,BC=3,利用判定定理4在画出ABBC后,画________确定点D,就可以画出平行四边形ABCD

 

答案:
解析:

ÐBCD=135°,作出CD=2

 


提示:

依据平行四边形的定义画,对边,角要相等

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

将边长为4的等边△ABC放置在边长为1的小正三角形组成的虚线网格中.
(1)在图①中画出将等边△ABC向右平移3格后所得的△A1B1C1,则四边形ABB1A1是平行四边形吗试说说你的理由;
(2)将等边△ABC向右平移n格后得到△A2B2C2,若四边形ABB2A2是菱形,则n的值是多少试在图②中画出平移后的图形,并计算此时菱形ABB2A2对角线BA2的长;
(3)如图③,请你继续探索,将等边△ABC向右平移若干格后得到△A3B3C3,使AC与A3B3能互相平分.画出平移后的图形,再连接AB3、AA3、A3C,此时四边形AB3CA3是怎样的特殊四边形?说说你的理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图1,若将△AOB绕点O逆时针旋转180°得到△COD,则△AOB≌△COD.此时,我们称△AOB与△COD为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC是锐角三角形且AC>AB,点E为AC中点,F为BC上一点且BF≠FC(F不与B,C重合),沿EF将其剪开,得到的两块图形恰能拼成一个梯形.
请分别按下列要求用直线将图2中的△ABC重新进行分割,画出分割线及拼接后的图形.
(1)在图3中将△ABC沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;
(2)在图4中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;
(3)在图5中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为钝角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•保定二模)定义:如果一条直线把一个面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.
如图1,AD是△ABC的中线,则有S△ADC=S△ABD,所以直线AD就是△ABC的一条面积等分线.
探究:
(1)如图2,梯形ABCD中,AB∥DC,连接AC,过B点作BE∥AC交DC的延长线于点E,连接AE,那么有S△AED=S梯形ABCD,请你给出这个结论成立的理由;
(2)在图2中,过点A用尺规作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
类比:
(3)如图3,四边形ABCD中,AB与CD不平行,过点A能否画出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知等边三角形ABC,
(1)以点B为旋转中心,把△ABC按顺时针旋转60°,请画出所得的像.
(2)求证:像和原三角形组成的四边形是平行四边形;
(3)若△ABC的边长为1cm,求所组成的平行四边形各组对边之间的距离.

查看答案和解析>>

同步练习册答案