精英家教网 > 初中数学 > 题目详情

)如图.矩形 PMON的边OM,ON分别在坐标铀上,将矩形 PMON 向右平移 4 个单位得到矩形 P’M’O’N’已知点 P 的坐标为(-2,3).     
(1)请在图中画出平移后的矩形P’M’O’N’;    
(2)求直线M’N’的解析式.

解:(1)如图所示  
(2)
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图所示,在平面直角坐标中,抛物线的顶点P到轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,抛物线的顶点M到x轴的距离是4,抛物线与x轴相交于O、P两点,OP=4;
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设点A是抛物线上位于O、M之间的一个动点,过A作x轴的平行线,交抛物线于另一点D,作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长l;
②试问矩形ABCD的周长l是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.
(3)连接OM、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点P外),使得△OMQ也是等腰三角形,简要说明你的理由(不必求出点Q的坐标).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC 在线段OM上,点A、D在抛物线上.
(1)请写出P、M两点的坐标,并求这条抛物线的解析式.
(2)设矩形ABCD的周长为L
①当BC=2时,求矩形ABCD的周长;
②矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值.
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否还存在点Q(除点M外),使得△OPQ也是等腰三角形?若有,请在图上用尺规作图方法作出.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》中考题集(45):20.5 二次函数的一些应用(解析版) 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

同步练习册答案