精英家教网 > 初中数学 > 题目详情

作业宝如图所示,已知在△ABC中,D是BC边上一点,∠1=∠B,∠2=∠C,∠BAC=75°,则∠DAC=________°.

40
分析:△ABD中,由三角形的外角性质知∠2=2∠1,因此∠4=2∠1,从而可在△BAC中,根据三角形内角和定理求出∠C的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC的度数.
解答:设∠1=∠B=x,则∠2=∠C=2x.
因为∠BAC=75°,
所以∠B+∠C=105°,即x+2x=105°,
所以x=35°;
所以∠2=∠C=70°,
∠DAC=180°-∠2-∠C=40°.
故答案为:40.
点评:题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图所示,已知在△ABC中,D是AB的中点,E是AC上的点,且∠ABE=∠BAC,EF∥AB,DF∥BE,请猜想DF与AE有怎样的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,已知在△ABC中,∠B=90°,点D、点E分别在BC和AB上.求证:AD2+CE2=AC2+DE2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=
59
59
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知在Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿射线CB方向平移到△A′B′C′的位置.若平移距离为3,求△ABC与△A′B′C′的重叠部分的面积.

查看答案和解析>>

同步练习册答案