精英家教网 > 初中数学 > 题目详情
如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=,边AB的垂直平分线CD分别与AB、x轴、y轴交于点C、G、D。

(1)求点G的坐标;
(2)求直线CD的解析式;
(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由。
解:(1)∵DC是AB垂直平分线,OA垂直AB,
∴G点为OB的中点

(2)过点C作CH⊥x轴于点H
在Rt△ABO中,∠ABO=30°,


又∵CD垂直平分AB
∴BC=2,
在Rt△CBH中,CH=BC=1,


∵∠DGO=60°


∴D(0,4)
设直线CD的解析式为:y=kx+b

解得
(3)存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形
①如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形
设QP交x轴于点E,在Rt△OEP中,OP=4,∠OPE=30°
∴OE=2,
②如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形,
延长QP交x轴于点F,在Rt△POF中,OP=4,∠FPO=30°


③如图,当PD=DQ=QO=OP=时,四边形DOPQ为菱形,
在Rt△DQM中,∠MDQ=30°,

④如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形,
设PQ交x轴于点N,此时∠OQP=∠ODQ=30°
在Rt△ONQ中,


综上所述,满足条件的点Q共有四点:,(,-2)。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△OAB中,∠OBA=90°,且点B的坐标为(0,4).
(1)写出点A的坐标;
(2)画出△OAB绕点O顺时针旋转90°后的△O1A1B1
(3)求出sin∠A1OB1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2),将△OAB绕点O逆时针旋转90°后得△精英家教网OA1B1
(1)在图中作出△OA1B1并直接写出A1,B1的坐标;
(2)求点B旋转到点B1所经过的路线长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,3).
(1)在图中画出△OAB绕点O逆时针旋转90°后的△OA1B1
(2)求点B旋转到点B1所经过的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△OAB中,∠OBA=90°,OB=AB=4,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1
(1)线段OB1的长是
4
4
,∠A1OB的度数是
135°
135°

(2)连接BB1,求证:四边形OBB1A1是平行四边形;
(3)求四边形OBB1A1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•株洲)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1
(1)线段OA1的长是
6
6
,∠AOB1的度数是
135
135
度;
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)四边形OAA1B1的面积.

查看答案和解析>>

同步练习册答案