精英家教网 > 初中数学 > 题目详情

如图所示,点A与点B的距离是3个单位长度的木条,当木条左端A点落在-10与-9之间,B点落在哪两个整数之间?

答案:
解析:

点B落在-7和-6之间


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、两个完全相同的三角形纸片,在平面直角坐标系中的摆放位置如图所示,点P与点P′是一对对应点,若点P的坐标为(a,b),则点P′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系xoy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2精英家教网,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.
(1)求这条抛物线的解析式;
(2)连接DB,P是线段BC上一动点(P不与B、C重合),过点P作PE∥BD交CD于E,则当△DEP面积最大时,求PE的解析式;
(3)作点D关于此抛物线对称轴的对称点F,连接CF交对称轴于点M,抛物线上一动点R,x轴上一动点Q,则在抛物线上是否存在点R,x轴上是否存在点Q,使得以C、M、Q、R为顶点的四边形是平行四边形?如果存在,求出Q点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江模拟)在8×8的正方形网格中建立如图所示坐标系,已知A(2,4),B(4,2).
(1)在第一象限内标出一个格点C,使得点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.
(2)填空:C点的坐标是
(1,1)
(1,1)
,△ABC的面积是
4
4

(3)请探究:在x轴上是否存在这样的点P,使以点A、B、P为顶点的三角形的面积等于△ABC的面积?若存在,请直接写出点P的坐标(可以在网格外);若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

四边形OABC在平面直角坐标系中位置如图所示,点A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),动点E自A点出发以每秒2个单位的速度沿A→B→C→O的路线移动,同时,点D以每秒1个单位的速度从O出发沿着射线OA方向运动,点M为OD的中点,当点D与A重合时停止一切运动.
(1)当点D与A重合时,点E的坐标是
(0,2)
(0,2)

(2)设△MDE的面积为S,运动时间为t,请写出S与t的函数关系式,指出自变量的取值范围,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是两个正方形纸片ABCD和CEFG叠放在一起,分别以BC边所在直线和BC边的中垂线为坐标轴建立如图所示的坐标系,其中B(-2,0),E(2,
2
),C(2,0),固定正方形ABCD,直线L经过AC两点;将正方形CEFG绕点C顺时针旋转135°得到正方形CE1F1G1
(1)在图2中求点E1的坐标,并直接写出点E1与直线L的位置关系.
(2)利用(1)的结论,将图2中的正方形CE1F1G1在射线CA上沿着CA方向以每秒1个单位的速度平移,平移后的正方形CE1F1G1设为正方形PQRH(图3),当点R移动到点A停止,设正方形PQRH移动的时间为t秒,正方形PQRH与正方形ABCD重叠部分的面积为S,请直接写出S与t之间的函数解析式,并写出函数自变量t的取值范围.
(3)在(2)的条件下,如果S=1时,过BP的直线为m,M点为直线m上的动点,N为直线L上的动点,那么是否存在平行四边形MNBC,如果存在,请求出M点的坐标,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案