精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,平行四边形ABCD中,E是BC中点,连接DE并延长,与AB的延长线交于点F.
求证:BF=CD.
分析:由于四边形ABCD是平行四边形,根据全等三角形的判定理理之一(角边角或ASA),易证△EBF和△ECD全等,根据全等三角形的性质,所以BF=CD.
解答:证明:∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠EBF=∠C,
∵E是BC中点,
∴BE=CE,
在△EBF和△ECD中,
∠BEF=∠CED
BE=CE
∠EBF=∠C

∴△EBF≌△ECD(ASA).
∴BF=CD.
点评:本题考查了平行四边形的性质和全等三角形的判定和性质,利用平行四边形的性质,获得全等的条件是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省江阴市夏港中学九年级第二学期期中考试数学卷 题型:解答题

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省九年级上学期阶段检测数学卷(解析版) 题型:解答题

已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中数学 来源:2011届江苏省江阴市九年级第二学期期中考试数学卷 题型:解答题

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步练习册答案