精英家教网 > 初中数学 > 题目详情

已知正n边形共有n条对角线,它的周长等于p,所有对角线长的和等于q,求数学公式的值.

解:设这个多边形的边数是n.
根据题意得:n•(n-3)=n,
解得:n=5.
则多边形的边数是5.

作正五边形ABCDE,连接AD;
∵五边形ABCDE是正五边形,
∴∠ABC=∠BAE==108°,AB=BC,
∴∠BAC=∠ACB==36°,
同理可知,∠AED=108°,AB=BC=AE=DE,
∴△ABC≌△AED,AC=AD;
∵∠BAC=∠DAE=36°,∠BAE=108°,
∴∠CAD=108°-36°-36°=36°,
∴∠ACD=∠ADC=72°;
作∠ACD的平分线,交AD于F,根据题意,∠CAD=36°,∠ACD=∠ADC=72°;
∴∠ACF=∠FCD=36°,AF=CF=CD,
∴△FCD∽△CAD,
∵正n边形共的周长等于p,所有对角线长的和等于q,
∴CD=,AC==,即=
=
=-1,即=1.
的值为1.
分析:n边形的对角线有n•(n-3)条,根据正n边形共有n条对角线,列方程即可求得多边形的边数为5.再作正五边形ABCDE,连接AD,根据正五边形的特点求出△ABC≌△AED,△ACD为等腰三角形,作∠ACD的平分线,交AD于F;根据△ACD与△CDF各角的度数可求出△FCD∽△CAD,根据其对应边成比例即可解答.
点评:本题考查了多边形的对角线与边的关系和正五边形的性质,解答此题的关键是熟知正五边形的特点,及全等、相似三角形的判定定理及性质,作出辅助线,构造出相应的三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知正n边形共有n条对角线,它的周长等于p,所有对角线长的和等于q,求
q
p
 - 
p
q
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

1、填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出
21
条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形
7
个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有
5
个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是
14

(5)平面上10条直线最多能把平面分成
56
个部分.
(6)平面上10个圆最多能把平面分成
92
个区域.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出______条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形______个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有______个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是______.
(5)平面上10条直线最多能把平面分成______个部分.
(6)平面上10个圆最多能把平面分成______个区域.

查看答案和解析>>

科目:初中数学 来源:1997年安徽省初中数学竞赛试卷(解析版) 题型:解答题

已知正n边形共有n条对角线,它的周长等于p,所有对角线长的和等于q,求的值.

查看答案和解析>>

同步练习册答案