精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的边长是10cm,点E,F,G,H分别从点A,B,C,D出发,以2cm/s的速度同时向点B,C,D,A运动.
(1)在运动的过程中,四边形EFGH是何种四边形?并说明理由.
(2)运动多少秒后,四边形EFGH的面积是52cm2

(1)四边形EFGH是正方形.
解:设运动时间为t,
∴AE=BF=CG=DH=2t,
∵正方形ABCD,
∴∠A=∠B=∠C=∠D=90° AB=BC=CD=DA=10cm,
∴BE=CF=DG=AH,
∴△AEH≌△BFE≌△CGF≌△DHG,
∴EH=EF=FG=HG,
∴四边形EFGH是菱形,
∵△AEH≌△BFE,
∴∠AEH=∠EFB,
∵∠EFB+∠BEF=90°,
∴∠AEH+∠BEF=90°,
∴∠HEF=90°,
∴四边形EFGH是正方形,

(2)设运动时间为xs,
∵点E,F,G,H的运动速度为2cm/s,
∴AE=BF=CG=DH=2x,
∵AB=BC=CD=DA=10cm,BE=CF=DG=AH,
∴BE=CF=DG=AH=10-x,
由勾股定理可得:EH2=AE2+AH2=(2x)2+(10-2x)2=8x2-40x+100,
∵S四边形EFGH=EH2
∴当S=52cm2时,
8x2-40x+100=52,
∴x2-5x+6=0,
∴(x-2)(x-3)=0,
∴x1=2,x2=3,
∵当x1=2时,2t=2×2=4cm<10cm,
当 x2=3时,2t=2×3=6cm<10cm,
∴x=2或x=3,
答:运动2秒或3秒后,四边形EFGH的面积是52cm2
分析:(1)设出运动时间,表示出AE,BF,CG,DH的长度,可知AE=BF=CG=DH,由题意即可推出BE=CF=DG=AH,可知△AEH≌△BFE≌△CGF≌△DHG,即可推出四边形EFGH是菱形,通过求∠HEF=90°即可推出结论,(2)设运动时间为x,依据勾股定理推出,EH2=AE2+AH2=8x2-40x+100,由S四边形EFGH=EH2=52,列出方程8x2-40x+100=52,解方程即可推出x的值,x的值需符合2x≤10.
点评:本题主要考查正方形的判定和性质、全等三角形的判定和性质、勾股定理,关键在于:(1)求证菱形EFGH的一个内角等于90°,(2)熟练运用勾股定理,用含x的表达式表示出EH2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案