精英家教网 > 初中数学 > 题目详情
如图,将第1题中的各个点的横坐标保持不变,纵坐标分别加3,所得的图案与原图案相比有什么变化?

 

答案:
解析:

横坐标保持不变,纵坐标分别加3后,所得各点坐标为:(03)(-57)(-33)(-54)(-52)(-33)(-41)(03),所得图案与原图案相比,形状大小都不变,整条鱼向上平移了3个单位.

 


提示:

平面直角坐标的性质

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、找规律
如图①所示的是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间的小三角形三边的中点,得到图③,按此方法继续连接,请你根据每个图中三角形的个数的规律完成各题.
(1)将下表填写完整;
图形编号
三角形个数 1 5      
(2)在第n个图形中有
(4n-3)
个三角形;(用含挖的式子表示)
(3)按照上述方法,能否得到2005个三角形如果能,请求出n;如果不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为:1+2+3+…+n=
 

精英家教网
精英家教网
(2)运用第(1)题的结论,试求1+2+3+…+99的值;
(3)在一次数学活动中,为了求
1
2
+
1
22
+
1
23
+
1
24
+
1
25
+…+
1
2n
的值,小明设计了如图3所示的边长为1的正方形图形.请你利用这个几何图形求
1
2
+
1
22
+
1
23
+
1
24
+
1
25
+…+
1
2n
的值为
 

(4)运用第(3)题的结论,试求
5
6
+
11
12
+
23
24
+
47
48
+
95
96
+
191
192
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、书籍是人类进步的阶梯!为爱护书一般都将书本用封皮包好.
问题1:现有精装词典长、宽、厚尺寸如图(1)所示(单位:cm),若按图(2)的包书方式,将封面和封底各折进去3cm.试用含a、b、c的代数式分别表示词典封皮(包书纸)的长是
2b+c+6
cm,宽是
a
cm;

问题2:在如图(4)的矩形包书纸皮示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度.
(1)若有一数学课本长为26cm、宽为18.5cm、厚为1cm,小海宝用一张面积为1260cm2的矩形纸包好了这本数学书,封皮展开后如图(4)所示.若设正方形的边长(即折叠的宽度)为x cm,则包书纸长为
2x+38
cm,宽为
2x+26
cm(用含x的代数式表示).
(2)请帮小海宝列好方程,求出第(1)题中小正方形的边长x cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①所示的是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间的小三角形三边的中点,得到图③,按此方法继续连接,请你根据每个图中三角形的个数的规律完成各题.

(1)将下表填写完整;
图形编号
三角形个数 1 5
9
9
13
13
17
17
(2)在第n个图形中有
4n-3
4n-3
个三角形;(用含n的式子表示)
(3)按照上述方法,能否得到2013个三角形?如果能,请求出n;如果不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

加试题(本小题满分20分,其中(1)、(2)、(3)题各3分,(4)题11分)
(1)一个正数的平方根为3-a和2a+3,则这个正数是
81
81

(2)若x2+2x+y2-6y+10=0,则xy=
-1
-1

(3)已知a,b分别是6-
13
的整数部分和小数部分,则2a-b=
13
13

(4)阅读下面的问题,并解答问题:
1)如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数是多少?(请在下列横线上填上合适的答案)
分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时可以利用旋转的特征等知识得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′为
等边
等边
三角形,则∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C为
直角
直角
三角形,则∠PP′C=
90
90
度,从而得到∠APB=
150
150
度.
 2)请你利用第1)题的解答方法,完成下面问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为边BC上的点,且∠EAF=45°,试说明:EF2=BE2+FC2

查看答案和解析>>

同步练习册答案