精英家教网 > 初中数学 > 题目详情

如图,二次函数y=x2+bx-3b+3的图象与x轴交于A,B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A,B,C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM,DM,将∠AMD绕点M顺时针旋转,两边MA,MD与x轴,y轴分别交于点E,F.若△DMF为等腰三角形,求点E的坐标.

解:(1)把点(b-2,2b2-5b-1)代入抛物线解析式,得:
2b2-5b-1=(b-2)2+b(b-2)-3b+3
解得b=2,
故抛物线解析式为y=x2+2x-3.

(2)由x2+2x-3=0,得x=-3或x=1,
∴A(-3,0),B(1,0),C(0,-3).
抛物线的对称轴为直线x=-1,圆心M在直线x=-1上,
∴设M(-1,n),作MG⊥x轴于点G,MH⊥y轴于点H,连接MC,MB.
∴MH=1,BG=2.
∵MB=MC,∴BG2+MG2=MH2+CH2
∴4+n2=1+(3+n)2
解得n=-1,
∴点M(-1,-1).


(3)如图,由M(-1,-1),得MG=MH.
∵MA=MD,
∴Rt△AMG≌Rt△DMH,∴∠1=∠2.
由旋转可知∠3=∠4,
∴△AME≌△DMF.
若△DMF为等腰三角形,则△AME必为等腰三角形.
设E(x,0),△AME为等腰三角形,分三种情况:
①AE=AM=,则x=-3,∴E(-3,0);
②∵点M在AB的垂直平分线上,
∴MA=ME=AB,∴E(1,0);
③点E在AM的垂直平分线上,则AE=ME.
AE=x+3,ME2=MG2+EG2=1+(-1-x)2
∴(x+3)2=1+(-1-x)2
解得:x=,∴E(,0).
∴所求点E的坐标为(-3,0),(1,0),(,0).
分析:(1)将点(b-2,2b2-5b-1)代入抛物线解析式,求出未知数,从而得到抛物线的解析式;
(2)利用垂径定理及勾股定理,求出点M的坐标;
(3)首先,证明△AME≌△DMF,从而将“△DMF为等腰三角形”的问题,转化为“△AME为等腰三角形”的问题;其次,△AME为等腰三角形,可能有三种情形,需要分类讨论,逐一分析计算.
点评:本题是二次函数综合题型,考查了二次函数的图象与性质、垂径定理、勾股定理、等腰三角形、全等三角形、旋转等知识点,是代数与几何的综合题.第(3)问中,注意转化思想以及分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案