精英家教网 > 初中数学 > 题目详情

数学公式中,当k=________时,是反比例函数.

-2
分析:根据反比例函数的定义.即y=(k≠0),只需令k2+k-3=-1、k2-k≠0,解出k的值即可.
解答:∵是反比例函数,
∴k2+k-3=-1,
解得:k=-2或1,
∵k2-k≠0,
∴k≠1,
∴k=-2,
故答案为:-2.
点评:本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx-1(k≠0)的形式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:在△ABC中,∠ACB=90°,AC=BC,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O处,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度反(0°<a<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图1所示).那么,在上述旋转过程中:
(1)如图1,线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?请说明你发现的结论的理由.
(2)如图2,连接HK,
①若AK=12,BH=5,求△OKH的面积;
②若AC=BC=4,设BH=x,当△CKH的面积为2时,求x的值,并说出此时四边形CHOK是什么特殊四边形.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

三角板是我们数学学习必不可少的工具,如图1是一副含45°和30°的三角板,其中三角板ABC中,∠A=∠B=45°,AC=BC;三角板DEF中,∠D=60°,∠E=30°.
现在我们进行如下操作:把含30°的三角板的直角顶点F位于另一三角板的斜边中点上,边FD与AC相交于点M,边FE与BC相交于点N,将三角板DEF绕点F旋转,点M、N分别在线段AC、BC上相应移动.
(1)请你探究:当∠AFD=45°时(如图2),FM与FN有怎样的数量关系?请说明理由;
(2)请你猜想:在三角板DEF绕点F旋转过程中,(1)中FM 与FN的数量关系还成立吗?如果成立,请说明理由;如果不成立,请举反例说明(图3供实验、操作备用).
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD交直线BC于点E,以A、D、E为顶点作矩形ADEF.
(1)求证:△AOD∽△DCE;
(2)若点A坐标为(0,4),点C坐标为(7,0).
①当点D的坐标为(5,0)时,抛物线y=ax2+bx+c过A、F、B三点,求点F的坐标及a、b、c的值;
②若点D(k,0)是线段OC上任意一点,点F是否还在①中所求的抛物线上?如果在,请说明理由;如果不在,请举反例说明;
(3)若点A的坐标是(0,m),点C的坐标是(n,0),当点D在线段OC上运动时,是否也存在一条抛物线,使得点F都落在该抛物线上?若存在,请直接用含m精英家教网、n的代数式表示该抛物线;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,在第一象限的矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD交直线BC于点E,以A、D、E为顶点作矩形ADEF.
(1)求证:△AOD∽△DCE;
(2)若点A坐标为(O,4),点C坐标为(7,0).
①当点D的坐标为(5,0)时,若抛物线经过A、F、B三点,求该抛物线的解析式;
②当点D(k,0)是线段OC(不包括端点)上任意一点,则点F仍在①中所求的抛物线上吗?请说明理由;
③当点A的坐标是(0,m),点C的坐标是(n,0),当点D在线段OC上运动时,是否了存在一条抛物线,使得点F始终落在该抛物线上?若存在,请直接写出该抛物线的解析式(用含m、n表示);若不存在,请说明理由.
(3)在第(2)题②的条件下,若点D(k,0)是在x轴上,且不在线段OC上的任意一点,其他条件不变,则点F是否还在①中所求的抛物线上?如果在,请以点D(k,0)在x负半轴上为例画出示意图(画在备用图上),并说明理由;如果不在,请举反例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC,D是BC的中点,将三角板中的90°角的顶点绕D点在△ABC内旋转,角的两边分别与AB、AC交于E、F,且点E、F不与A、B、C三点重合.
(1)如果∠A=90°,观察并探索,当E、F点位置变化时,BE、EF、CF三条线段中有否有一条线段始终最长.请指出,并给予证明.
(2)请分别∠A>90°、∠A<90°两种情况考察BE、EF、CF三条线段中有否有一条线段始终最长.如果有请,指出最长的线段,但不需证明;如果没有,请画草图举出反例.

查看答案和解析>>

同步练习册答案