精英家教网 > 初中数学 > 题目详情

作业宝如图;已知AB是⊙O的直径,PB⊥AB,PC是⊙O的切线,切点为C.
(1)求证;AC∥OP;
(2)CO的延长线交PB延长线于E交⊙O于F,若⊙O的半径为3,PO=数学公式,求EF的长.

(1)证明:连结OC,
∵PC是⊙O的切线,
∴∠OCP=90°,
在Rt△PCO和Rt△PBO中,

∴Rt△PCO≌RtPBO(HL),
∴∠COP=∠BOP,
∴∠A=∠COB=∠POB,
∴AC∥OP;

(2)解:方法一:
若⊙O的半径为3,PO=3
∴PB=PC=6,
∵∠E=∠E,∠PCE=∠OBE=90°,
∴△EBO∽△ECP,
==,令OE=x,则BE=,CE=x+3,
=
解得:x=5,
∴EF=OE-3=5-3=2;
方法二:
由条件可得出:△EBO∽△ECP,
∵OB=OC=3,PO=3
∴PB=PC=6,
=
=
S△OPC=S△OBP=9,
=
∴S△EBO=6,
∴BE=4,
∴OE=5,
∴EF=2.
分析:(1)首先得出Rt△PCO≌RtPBO,进而得出∠A=∠COB=∠POB,即可得出答案;
(2)首先证明△EBO∽△ECP,即可得出==,进而求出即可.
点评:此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质和切线的性质等知识,根据已知得出△EBO∽△ECP是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案