精英家教网 > 初中数学 > 题目详情

已知∠α,请用尺规作出∠AOB=∠α.(只保留作图痕迹,但不用写作法)

解:
分析:可先做一条射线OB,以∠α的顶点为圆心,以任意长为半径画弧,交∠α的两边于两点;以点O为圆心,刚才的半径为半径,交射线OB于一点,以这点为圆心,∠α两边上两点的距离为半径画弧,交前弧于一点,过这点作射线OA,∠AOB就是所求的角.
点评:用到的知识点为:边边边可判定两三角形全等;全等三角形的对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知线段a,b和∠1,
(1)请用尺规作一个三角形ABC,使BC=a,AC=b,∠ACB=∠1;
(2)在上题图中,若a=4,b=3,∠1=45°,请求出此三角形的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浙江一模)如图1,在平面上,给定了半径为r的⊙O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这种把点P变为点P′的变换叫做反演变换,点P与点P′叫做互为反演点,⊙O称为基圆.
(1)如图2,⊙O内有不同的两点A、B,它们的反演点分别是A′、B′,则与∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如图3,⊙O内有一点M,请用尺规作图画出点M的反演点M′;(保留画图痕迹,不必写画法).
(3)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆O的半径为r,另一个半径为r1的⊙C,作射线OC交⊙C于点A、B,点A、B关于⊙O的反演点分别是A′、B′,点M为⊙C上另一点,关于⊙O的反演点为M′.求证:∠A′M′B′=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△AOC如图A(-1,0)、C(0,3),把△AOC 以O点为旋转中心顺时针方向旋转
90°,使C与B重合
(1)写出B点的坐标,求经过A、B、C三点的抛物线的解析式并画出图象;
(2)求抛物线顶点D的坐标,求证:△BCD是直角三角形;
(3)我们知道△DBC是直角三角形,在抛物线上除D点外,是否还存在另外一个点P,使得△PBC是直角三角形?若存在,请用尺规作图画出这样的点;若不存在,请说明理由;
(4)设抛物线的对称轴与x轴交于点H,射线CH交以O为圆心OC为半径的圆于G,求HG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图1,在平面上,给定了半径为的⊙,对于任意点,在射线上取一点,使得·,这种把点变为点的变换叫做反演变换,点与点叫做互为反演点,⊙称为基圆.
 
⑴如图2,⊙内有不同的两点,它们的反演点分别是,则与∠一定相等的角是(   ▲  )
A.∠B.∠C.∠D.∠
⑵如图3,⊙内有一点,请用尺规作图画出点的反演点;(保留画图痕迹,不必写画法).
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆的半径为,另一个半径为的⊙,作射线交⊙于点,点关于⊙的反演点分别是,点为⊙上另一点,关于⊙的反演点为.求证:∠=90°.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年辽宁省盘锦市四完中九年级(上)第四次月考数学试卷(解析版) 题型:解答题

已知:△AOC如图A(-1,0)、C(0,3),把△AOC 以O点为旋转中心顺时针方向旋转
90°,使C与B重合
(1)写出B点的坐标,求经过A、B、C三点的抛物线的解析式并画出图象;
(2)求抛物线顶点D的坐标,求证:△BCD是直角三角形;
(3)我们知道△DBC是直角三角形,在抛物线上除D点外,是否还存在另外一个点P,使得△PBC是直角三角形?若存在,请用尺规作图画出这样的点;若不存在,请说明理由;
(4)设抛物线的对称轴与x轴交于点H,射线CH交以O为圆心OC为半径的圆于G,求HG的长.

查看答案和解析>>

同步练习册答案