精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠ACB=90°,BC=1,AC=2,过点C作CC1⊥AB于C1,过点C1作C1C2⊥AC于C2,过点C2作C2C3⊥AB于C3…,按此作法进行下去,则数学公式=________(其中n≥2).


分析:先在△ABC中由勾股定理求出AB=,根据正弦函数的定义得出sinB===,然后依次在△BC1C、△C2C1C、△C3C2C1、△C4C3C2中,求出=sinB==sinB==sinB==sinB=;同理可得=sinB=
解答:∵在△ABC中,∠ACB=90°,BC=1,AC=2,
∴AB===
∴sinB===
在△BC1C中,∵∠BC1C=90°,
∴sinB==
在△C2C1C中,∵∠C1C2C=90°,
∠C1CC2=90°-∠BCC1=∠B,
∴sin∠C1CC2=sinB==
在△C3C2C1中,∵∠C2C3C1=90°,C1C2∥BC,
∴∠C3C1C2=∠B,
∴sin∠C3C1C2=sinB==
在△C4C3C2中,∵∠C3C4C2=90°,
∠C4C2C3=90°-∠A=∠B,
∴sin∠C4C2C3=sinB==
同理可得
=sinB=
故答案为
点评:本题主要考查勾股定理,锐角三角函数,平行线、垂线的性质等知识点,关键在于熟练运用三角函数的定义得出sinB=,然后总结出规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案