精英家教网 > 初中数学 > 题目详情

作业宝如图,已知抛物线数学公式与x轴交于点A、B,点B的坐标为(3,0),它的对称轴为直线x=2.
(1)求二次函数解析式;
(2)若抛物线的顶点为D,联结BD并延长交y轴于点P,联结PA,求∠APC的余切值;
(3)在(2)的条件下,若抛物线上存在一点E,使得∠DPE=∠ACB,求点E坐标.

解:(1)∵抛物线与x轴交于点A、B,点B的坐标为(3,0),它的对称轴为直线x=2,

解得:
∴二次函数解析式为:y=x2-x+2;

(2)∵y=x2-x+2=(x2-4x)+2=(x-2)2-
∴抛物线顶点坐标为:(2,-),
设直线BD的解析式为:y=kx+a,

解得:
∴直线BD的解析式为:y=x-2,
∴P(0,-2),
∵点B的坐标为(3,0),它的对称轴为直线x=2,
∴A点坐标为:(1,0),
在直角三角形POA中,
cot∠APC==2;

(3)∵BC=BP,AC=AP,
∴∠BCO=∠BPO,∠ACO=∠APO,
∴∠BAC=∠BPA,
∴延长PA交抛物线于点E,过点E作EH⊥x轴,
∴△AOP∽△AHE,

设AH=x,EH=2x,则点E(x+1,2x)

解得:x1=0,x2=5,
∴E1(1,0),E2(6,10).
分析:(1)利用待定系数法求二次函数解析式进而得出答案;
(2)利用配方法求出二次函数顶点坐标,进而得出A点坐标,再求出直线BD的解析式,进而得出∠APC的余切值;
(3)利用相似三角形的判定与性质得出△AOP∽△AHE,进而得出E点坐标.
点评:此题主要考查了二次函数的综合以及相似三角形的判定与性质和锐角三角函数关系等知识,根据已知结合相似三角形判定与性质得出E点坐标是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)点M是直线CD上的一动点,BM交抛物线于N,是否存在点N是线段BM的中点,如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-1,0),与y轴交于点C(0,3),且对称轴方程为x=1
(1)求抛物线与x轴的另一个交点B的坐标;
(2)求抛物线的解析式;
(3)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(4)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-1,0),E(3,0),与y轴交于点B,且该精英家教网函数的最大值是4.
(1)抛物线的顶点坐标是(
 
 
);
(2)求该抛物线的解析式和B点的坐标;
(3)设抛物线顶点是D,求四边形AEDB的面积;
(4)若抛物线y=mx2+nx+p与上图中的抛物线关于x轴对称,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;
(3)将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?

查看答案和解析>>

同步练习册答案