精英家教网 > 初中数学 > 题目详情

如图,已知直线y=数学公式x与双曲线y=数学公式(k>0)交于A、B两点,点B的坐标为(-4,-2),C为双曲线y=数学公式(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为________.

(2,4)或(8,1)
分析:把点B的坐标代入反比例函数解析式求出k值,再根据反比例函数图象的中心对称性求出点A的坐标,然后过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),然后根据S△AOC=S△COF+S梯形ACFE-S△AOE列出方程求解即可得到a的值,从而得解.
解答:解:∵点B(-4,-2)在双曲线y=上,
=-2,
∴k=8,
根据中心对称性,点A、B关于原点对称,
所以,A(4,2),
如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),
若S△AOC=S△COF+S梯形ACFE-S△AOE
=×8+×(2+)(4-a)-×8,
=4+-4,
=
∵△AOC的面积为6,
=6,
整理得,a2+6a-16=0,
解得a1=2,a2=-8(舍去),
==4,
∴点C的坐标为(2,4).
若S△AOC=S△AOE+S梯形ACFE-S△COF=
=6,
解得:a=8或a=-2(舍去)
∴点C的坐标为(8,1).
故答案为:(2,4)或(8,1).
点评:本题考查了反比例函数与一次函数的交点问题,反比例函数系数的几何意义,作辅助线并表示出△ABC的面积是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.
(1)写出∠AOC与∠BOD的大小关系:
相等
,判断的依据是
等角的补角相等

(2)若∠COF=35°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知直线l1∥l2,AB⊥CD,∠1=30°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l1y=
2
3
x+
8
3
与直线 l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀化)如图,已知直线a∥b,∠1=35°,则∠2=
35°
35°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线m∥n,则下列结论成立的是(  )

查看答案和解析>>

同步练习册答案