精英家教网 > 初中数学 > 题目详情

用反证法证明:等腰三角形两底角必为锐角.

证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,
而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.
②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,
而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.
综上所述,假设①,②错误,所以∠B,∠C只能为锐角.
故等腰三角形两底角必为锐角.
分析:用反证法证明;先设等腰三角形的两底都是直角或钝角,然后得出假设与三角形内角和定理相矛盾,从而得出原结论成立.
点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

下列说法正确的是(  )
A、等腰三角形的角平分线、中线、高线互相重合
B、面积相等的两个三角形一定全等
C、用反证法证明命题“三角形中至少有一个角不大于60°”的第一步是“假设三角形中三个角都大于60°”
D、反比例函数y=
6
x
中函数值y随自变量x的增大一定而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

下列命题宜用反证法证明的是(  )
A、等腰三角形两腰上的高相等B、有一个外角是1200的等腰三角形是等边三角形C、两条直线都与第三条直线平行,则这两条直线互相平行D、全等三角形的面积相等

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

下列命题宜用反证法证明的是


  1. A.
    等腰三角形两腰上的高相等
  2. B.
    有一个外角是1200的等腰三角形是等边三角形
  3. C.
    两条直线都与第三条直线平行,则这两条直线互相平行
  4. D.
    全等三角形的面积相等

查看答案和解析>>

同步练习册答案