精英家教网 > 初中数学 > 题目详情

如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为


  1. A.
    20°
  2. B.
    30°
  3. C.
    32°
  4. D.
    36°
D
分析:由题意可得点P是△ABC的内心,连接AP,则AP平分∠BAC,设∠A=2x,分别表示出∠PBC,∠PCD,在△APD中利用三角形的内角和为180°,可得出x的值,继而得出答案.
解答:连接AP,

∵P为其底角平分线的交点,
∴点P是△ABC的内心,
∴AP平分∠BAC,
∵AB=AC,
∴∠ABC=∠ACB,
设∠A=2x,则∠DAP=x,∠PBC=∠PCB=45°-x,
∵DA=DP,
∴∠DAP=∠DPA,
由折叠的性质可得:∠PDC=∠PBC=45°-x,
则∠ADP=180°-∠PDC=135°+x,
在△ADP中,∠DAP+∠DPA+∠ADP=180°,即x+x+135°+x=180°,
解得:x=18,
则∠A=2x=36°.
故选D.
点评:本题考查了翻折变换的知识,解答本题的关键是判断出点P是三角形的内心,注意熟练掌握三角形的内角和定理,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于(  )
A、80°B、70°C、60°D、50°

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,等腰△ABC中,AB=AC,BD为腰AC的中线,将△ABC分成长12cm和9cm的两段,则等腰△ABC的腰长为
8或6

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰△ABC中,AC=BC=10,AB=12,以BC为直径作⊙0交AB于D,交AC于G,DF⊥AC,垂足为F,交CB的延长线于点E,则sinE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰△ABC中,AB=AC,D为BC中点,E为射线AD上一点.
求证:△ABE≌△ACE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰△ABC中,AB=AC,D、E分别为AC、AB的中点.
求证:BD=CE.

查看答案和解析>>

同步练习册答案