精英家教网 > 初中数学 > 题目详情

b为何值时直线①,②的交点正在x轴上.

答案:-8/3
解析:

解:∵点A是直线的交点,

A的坐标同时满足①②,因此A点的坐标也是①②构成的方程组的解.

解方程组

∴点A的坐标(b43b8)

∵点Ax轴上,

3b8=0,解得


提示:

此题可以把函数的解析式看成关于x,y的二元一次方程,那么两函数的图象的交点坐标就是方程组的解,反之也成立


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知⊙O的圆心O在射线PM上,PN切⊙O于Q,PO=20cm,∠P=30°,A、B两点同时从P点出发,点A以4cm/s的速度沿PM方向移动,点B沿PN方向移动,且直线AB始终垂直PN.设运动时间为t秒,求下列问题.(精英家教网结果保留根号)
(1)求PQ的长;
(2)当t为何值时直线AB与⊙O相切?
(3)当t为何值时,直线AB与⊙O相交的弦长是16cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松北区一模)如图,平面直角坐标系中O为坐标原点,直线y=
3
4
x+6与x轴、y轴分别交于A、B两点,C为OA中点;
(1)求直线BC解析式;
(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒
13
2
个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t(s),求y于t的函数关系式;
(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平面直角坐标系中,菱形ABCD的顶点分别在x轴、y轴上,其中C,D两点的坐标分别为(4,0),(0,-3).两动点P、Q分别从A、C同时出发,点P以每秒1个单位的速度沿线段AB向终点B运动,点Q以每秒2个单位的速度沿折线CDA向终点A运动,设运动时间为x秒.
(1)求菱形ABCD的高h和面积s的值;
(2)当Q在CD边上运动,x为何值时直线PQ将菱形ABCD的面积分成1:2两部分;
(3)设四边形APCQ的面积为y,求y关于x的函数关系式(要写出x的取值范围);在P、Q运动的整个过程中是否存在y的最大值?若存在,求出这个最大值,并指出此时P、Q的位置;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省扬州市扬中教育集团树人学校九年级中考第三次模拟考数学卷(带解析) 题型:解答题

如图,平面直角坐标系中O为坐标原点,直线与x轴、y轴分别交于A、B两点,C为OA中点;

(1)求直线BC解析式;
(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t(s ),求y于t的函数关系式;
(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省扬州市教育集团树人学校九年级中考第三次模拟考数学卷(解析版) 题型:解答题

如图,平面直角坐标系中O为坐标原点,直线与x轴、y轴分别交于A、B两点,C为OA中点;

(1)求直线BC解析式;

(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t(s ),求y于t的函数关系式;

(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.

 

查看答案和解析>>

同步练习册答案