精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.

(1)证明DE∥CB;

(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.

答案:
解析:

  解:(1)证明:连结CE.

  ∵点E为Rt△ACB的斜边AB的中点,

  ∴CE=AB=AE.

  ∵△ACD是等边三角形,∴AD=CD

  在△ADE与△CDE中,

  AD=CD,DE=DE,AE=CE,

  ∴△ADE≌△CDE.

  ∴∠ADE=∠CDE=30°.

  ∵∠DCB=150°,

  ∴∠EDC+∠DCB=180°.

  ∴DE∥CB

  (2)∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.

  ∴∠B=30°.

  在Rt△ACB中,sinB=,sin30°=,AC=或AB=2AC

  ∴当AC=或AB=2AC时,四边形DCBE是平行四边形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案