精英家教网 > 初中数学 > 题目详情
15.如图,在平面直角坐标系中,抛物线y=mx2+4mx-5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=$\frac{\sqrt{3}}{3}$x相交于点E,与x轴相交于点D,点P在直线y=$\frac{\sqrt{3}}{3}$x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.
(1)如图①所示,若抛物线顶点的纵坐标为6$\sqrt{3}$,求抛物线的解析式;
(2)求A、B两点的坐标;
(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=$\frac{\sqrt{3}}{3}$x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.

分析 (1)先提取公式因式将原式变形为y=m(x2+4x-5),然后令y=0可求得函数图象与x轴的交点坐标,从而可求得点A、B的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为x=-2,故此可知当x=-2时,y=6$\sqrt{3}$,于是可求得m的值;
(2)由(1)的可知点A、B的坐标;
(3)先由一次函数的解析式得到∠PBF的度数,然后再由PD⊥PF,FO⊥OD,证明点O、D、P、F共圆,最后依据圆周角定理可证明∠PDF=60°.

解答 解:(1)∵y=mx2+4mx-5m,
∴y=m(x2+4x-5)=m(x+5)(x-1).
令y=0得:m(x+5)(x-1)=0,
∵m≠0,
∴x=-5或x=1.
∴A(-5,0)、B(1,0).
∴抛物线的对称轴为x=-2.
∵抛物线的顶点坐标为为6$\sqrt{3}$,
∴-9m=6$\sqrt{3}$.
∴m=-$\frac{2\sqrt{3}}{3}$.
∴抛物线的解析式为y=-$\frac{2\sqrt{3}}{3}$x2-$\frac{8\sqrt{3}}{3}$x+$\frac{10\sqrt{3}}{3}$.
(2)由(1)可知:A(-5,0)、B(1,0).
(3)如图所示:
∵OP的解析式为y=$\frac{\sqrt{3}}{3}$x,
∴∠AOP=30°.
∴∠POF=60°
∵PD⊥PF,FO⊥OD,
∴∠DPF=∠FOD=90°.
∴∠DPF+∠FOD=180°.
∴点O、D、P、F共圆.
∴∠PDF=∠POF.
∴∠PDF=60°.

点评 本题主要考查的是二次函数的性质、解一元二次方程、函数图象与坐标轴的交点,四点共圆、圆周角定理的应用,证得点O、D、P、F共圆是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列说法:
(1)无限小数都是无理数;
(2)实数与数轴上的点一一对应;
(3)任何实数都有平方根;
(4)无理数就是带根号的数.
其中说法正确的是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在等腰△ABC中,AB=AC,AD⊥BC,∠BAC=50°,则∠BAD=25°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,⊙O的直径AB⊥弦CD,垂足为点E,连接AC,若CD=2$\sqrt{3}$,∠A=30°,则⊙O的半径为2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下面给出的是一些产品的图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.
(1)求证:△ABD∽△AEB;
(2)当$\frac{AB}{BC}$=$\frac{4}{3}$时,求tanE;
(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为(  )
A.$\frac{2\sqrt{2}}{5}$B.$\frac{9\sqrt{2}}{20}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{4\sqrt{2}}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.
(1)求证:△ADE≌△CBF;
(2)若AC与BD相交于点O,求证:AO=CO.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.六边形的内角和是(  )
A.540°B.720°C.900°D.360°

查看答案和解析>>

同步练习册答案