分析 要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.
解答
解:连接OD,如右图所示,
由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,
∴BO=2OD=6,∠BOD=60°,
∴∠ODC=∠OCD=60°,AO=BO•tan30°=$6×\frac{\sqrt{3}}{3}=2\sqrt{3}$,
∵∠COE=90°,OC=3,
∴OE=OC•tan60°=$3×\sqrt{3}=3\sqrt{3}$,
∴AE=OE-OA=$3\sqrt{3}-2\sqrt{3}=\sqrt{3}$,
故答案为:$\sqrt{3}$.
点评 本题考查切线的性质,解题的关键是明确题意,找出所求问题需要的条件.
科目:初中数学 来源: 题型:选择题
| A. | $\left\{{\begin{array}{l}{8x-3=y}\\{7x+4=y}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{8x+3=y}\\{7x-4=y}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{y-8x=3}\\{y-7x=4}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{8x-y=3}\\{7x-y=4}\end{array}}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ②④⑤⑥ | B. | ①③⑤⑥ | C. | ②③④⑥ | D. | ①③④⑤ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com