精英家教网 > 初中数学 > 题目详情

如果,求证:x+y=-z.

答案:
解析:

  证明:设=k,

  则x=k(a-b),y=k(b-c),z=k(c-a).

  ∴x+y=k(a-b)+k(b-c)

  =k(a-c)=-k(c-a),

  ∴x+y=-z.


提示:

  点悟:给出的条件,若想分离出x,y,z,只有应用其连比相等这一条件,设其等于k,引入参数k,即可为证明等式创造条件.

  点拨:此题的关键在于引进了参数k,化分式为整式,这种将连比形式用k表达,统一其条件的方法,是解连比式为条件的题目的常用方法.


练习册系列答案
相关习题

科目:初中数学 来源:2011年浙江省义乌市初中毕业生学业考试模拟数学卷 题型:解答题

(本题6分) 已知:如图,在△ABC中, DBC边上的一点,EAD的中点,过点ABC的平行线交与BE的延长线于点F,且AFDC,连结CF

【小题1】(1)求证:DBC的中点;
【小题2】(2)如果ABAC,试判断四边形ADCF形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2011~2012贵州普安县江西坡镇民族中学九年级上期末测试数学试卷(带解析) 题型:解答题

如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。

(1)求证:AD=DC
(2)求证:DE是的切线
(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。

查看答案和解析>>

科目:初中数学 来源:2013-2014学年四川富顺骑龙学区九年级上学期期中检测数学试卷(解析版) 题型:解答题

如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E.

(1)求证:AD=DC

(2)求证:DE是⊙O1的切线

(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012贵州普安县江西坡镇民族中学九年级上期末测试数学试卷(解析版) 题型:解答题

如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。

(1)求证:AD=DC

(2)求证:DE是的切线

  (3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。

 

查看答案和解析>>

同步练习册答案