精英家教网 > 初中数学 > 题目详情

(1)图①至图③中,AB=数学公式,旋转角∠CAB=30°.
思考:
如图①,当线段AB绕点A旋转至AC的位置时,则点B所经过的路径长为______;图中阴影部分的面积为______;
作业宝
探究一
如图②,当线段AB变为以AB为直径的半圆时,将其绕点A旋转至图②中位置,则图中阴影部分的面积为______;
如图③,当线段AB变为等腰直角三角形ADB时,∠ADB=90°,将其绕点A旋转,使点B到点C,点D到点E.求图中阴影部分的面积S.
(2)探究二
图④中,一个不规则的图形,其中AB=a,AD=b,点B旋转到点C,旋转角∠CAB=n°(0°<n<180°),点D旋转到点E,则点B所经过的路径长为______;图中阴影部分的面积为______.

解:(1)思考:如图①,
∵AB=,旋转角∠CAB=30°,
∴线段AB绕点A旋转至AC的位置时,则点B所经过的路径长为:=
阴影部分的面积为:=
故答案为:

探究一:
如图②,当线段AB变为以AB为直径的半圆时,将其绕点A旋转至图②中位置,则图中阴影部分的面积为:
S=S半圆+S扇形CAB-S半圆=S扇形CAB=
故答案为:

如图③:
S=S△AEC+S扇形CAB-S△ADB
∵△ADB≌△AEC;
∴S=S扇形CAB
=
故答案为:

(2)探究二:
∵AB=a,旋转角∠CAB=n°(0°<n<180°),
∴点B所经过的路径长为:
图中阴影部分的面积为:S=S不规则图形+S扇形CBA-S不规则图形-S扇形DEA=S扇形CAB-S扇形DAE=
故答案为:
分析:(1)利用弧长公式直接求出点B所经过的路径长即可;再利用扇形面积公式求出图中阴影部分的面积;
探究一:当线段AB变为以AB为直径的半圆时,S=S半圆+S扇形CAB-S半圆=S扇形CAB即可求出;如图③:S=S△AEC+S扇形CAB-S△ADB,求出即可;
(2)探究二:根据AB=a,旋转角∠CAB=n°(0°<n<180°),利用弧长公式求出,再利用图中阴影部分的面积为S扇形CAB-S扇形DAE求出即可.
点评:此题主要考查了弧长公式的应用以及扇形面积公式的应用,根据图象得出S=S扇形CAB,以及S=S扇形CAB-S扇形DAE是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.
当α=
 
度时,点P到CD的距离最小,最小值为
 

探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=
 
度,此时点N到CD的距离是
 

探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数椐:sin49°=
3
4
,cos41°=
3
4
,tan37°=
3
4
.)
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012届吉林省初三上学期第二次月考数学试卷 题型:解答题

在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.

1.如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,

求证:FM = MH,FM⊥MH

2.将图-1中的CE绕点C顺时针旋转一个锐角,得到图2,

求证:△FMH是等腰直角三角形

3.将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必

说明理由)

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.
当α=______度时,点P到CD的距离最小,最小值为______.
探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=______度,此时点N到CD的距离是______.
探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数椐:sin49°=数学公式,cos41°=数学公式,tan37°=数学公式.)
作业宝

查看答案和解析>>

科目:初中数学 来源:河北省中考真题 题型:解答题

如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点,
思考
如图1,圆心为O的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α。
当α=______度时,点P到CD的距离最小,最小值为______。
探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=_______度,此时点N到CD的距离是_____。
探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转。
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围。(参考数椐:sin49°=,cos41°=,tan37°=

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图(2)),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图(3)的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图(3)至图(6)中统一用F表示)

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决。

(1)将图(3)中△ABF沿BD向右平移到图(4)的位置,使点B与点F重合,请你求出平移的距离;

(2)将图(3)中△ABF绕点F顺时针方向旋转30°到图(5)的位置,A1F交DE于点G,请你求出线段FG的长度; 

(3)将图(3)中的△ABF沿直线AF翻折到图(6)的位置,AB1交DE丁点H,请证明:AH=DH。

查看答案和解析>>

同步练习册答案