精英家教网 > 初中数学 > 题目详情

如图,已知抛物线)与轴的一个交点为,与y轴的负半轴交于点C,顶点为D

(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点A的坐标;

(2)以AD为直径的圆经过点C

①求抛物线的解析式;

②点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标.

 


解:(1)对称轴是直线:

A的坐标是(3,0).

(2)如图,连接ACAD,过D于点M


解法一:利用

∵点ADC的坐标分别是A (3,0),D(1,

C(0),

AO=3,MD=1.

又∵

∴由

∴函数解析式为:

  解法二:利用以AD为直径的圆经过点C

∵点AD的坐标分别是A (3,0) 、D(1,)、C(0,),

又∵

由①、②得  

∴函数解析式为:

(3)如图所示,

BAFE为平行四边形时

      则,并且

      ∵=4,∴=4            

由于对称为

∴点F的横坐标为5.

代入

F(5,12).

根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点F,使得四边形BAEF是平行四边形,此时点F坐标为(,12).

当四边形BEAF是平行四边形时,点F即为点D

此时点F的坐标为(1,).

综上所述,点F的坐标为(5,12), (,12)或(1,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案