精英家教网 > 初中数学 > 题目详情

点(-2,1)所在的象限是

[  ]

A.第一象限

B.第二象限

C.第三象限

D.第四象限

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、若点P在线段AB所在的直线上,AB=3,PB=5,则PA长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:AB是⊙O的直径,AC是⊙O上一条弦,AC在AB下方,在⊙O上存在一点D.精英家教网
(1)(如图a),当D点在O点在正上方,连接AD、CD、BC、BD,CD交AB于E,则,在图中你可以发现多少对相似三角形?请列举出来,并说明理由.
(2)①(如图b),当D点在劣弧
BC
上运动(不与B、C重合)则AD
 
AC(在横线上填写“>”、“<”或“=”)并说明理由;
②(如图c),当D点在劣弧
AC
上运动(不与A、C重合)则AD
 
AC(在横线上填写“>”、“<”或“=”)并说明理由;
(3)如图d,以B点为原点,AB所在的直线为x轴,建立平面直角坐标系,∠DCA=∠CBA=60°,连接BD,过C点作CE∥DB,求证:四边形CDBE为平行四边形.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某公路隧道横截面为抛物线,其最大高度6米,底部宽度OM为12米,现以O点为原点,OM所在的直线为x轴建立直角坐标系.
(1)求这条抛物线的解析式(不必写x的取值范围);
(2)若要搭建一个矩形支架AD-DC-CB(由三段组成)使C、D在抛物线上,A、B在地面OM上,则这个支架总长L的最大值是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•牡丹江)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.
(3)若AC=6,DE=4,则DF=
2或10
2或10

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鹰潭模拟)某校九年级(1)班数学兴趣小组开展了一次活动,过程如下:
如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小明将一块直角三角板的直角顶点放在斜边BC边的中点O上,从BC边开始绕点A顺时针旋转,其中三角板两条直角边所在的直线分别交AB、AC于点E、F.
(1)小明在旋转中发现:在图1中,线段AE与CF相等.请你证明小明发现的结论;
(2)小明将一块三角板中含45°角的顶点放在点A上,从BC边开始绕点A顺时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.当0°<α≤45°时,小明在旋转中还发现线段BD、CE、DE之间存在如下等量关系:
BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决:
小颖的方法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的方法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3).
请你从中任选一种方法进行证明;
(3)小明继续旋转三角板,在探究中得出:当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立.现请你继续探究:当135°<α<180°时(如图4),等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立,说明理由.

查看答案和解析>>

同步练习册答案