精英家教网 > 初中数学 > 题目详情

(1)已知:如图1所示,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
(2)如图2所示,AB是⊙O的切线,切点为A,OA=1,∠AOB=60°,求图中阴影部分的面积.

(1)证明:∵∠1=∠2,
∴∠1+∠DAB=∠2+∠DAB,
∴∠DAE=∠CAB,
在△DAE和△CAB中

∴△DAE≌△CAB,
∴BC=ED;

(2)解:∵AB切⊙O于A,
∴∠OAB=90°,
∵∠BAO=60°,
∴∠B=30°,
∵OA=1,
∴OB=2OA=2,由勾股定理得:AB=
∴图中阴影部分的面积S=S△BOA-S扇形COA=×1×-=-
分析:(1)求出∠DAE=∠CAB,根据ASA证出△DAE≌△CAB即可;
(2)求出△BOA面积和扇形COA面积,相减即可.
点评:本题考查了三角形面积,扇形面积,切线的性质,勾股定理,全等三角形的性质和判定的应用,主要考查学生的推理能力和计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图1所示,直线PA与x轴交于点A,与y轴交于点C(0,2),且S△AOC=4,直线BD与x轴交于点B,与y轴交于点D,直线PA与直线BD交于点P(2,m),点P在第一象限,连接OP.
(1)求点A的坐标;
(2)求直线PA的函数表达式;
(3)求m的值;
(4)若S△BOP=S△DOP,请你直接写出直线BD的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1所示,直线x+y=9与x轴、y轴相交于C、D两点,直线2x+3y+12=0与x轴、y轴相交于A、B两点,F(4,0)是x轴上一点,过C点的直线l垂直于x轴,N是直线l上一点(N点与C点不重合),连接AN.
(1)求A、D两点的坐标;
(2)若P是AN的中点,PF=5,猜想∠APF的度数,并说明理由;
(3)如图2所示,连接NF,求△AFN外接圆面积的最小值,并求△AFN外接圆面积的最小时,圆心G的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知:如图1所示,Rt△ABC与Rt△ADE中,∠ACB=∠AED=90°,AC=kBC,AE=kDE,点O为线段BD的中点.探索∠COE、∠ADE之间有怎样的数量关系,证明你的结论.
说明:如果你反复探索没有解决问题,可以选取(1)和(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为4分.
(1)点E在CA延长线上(如图2);
(2)k=1,点E在CA延长线上(如图3).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)(1)已知:如图1所示,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
(2)如图2所示,AB是⊙O的切线,切点为A,OA=1,∠AOB=60°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:2010年河北省石家庄市中考数学一模试卷(解析版) 题型:解答题

已知,如图1所示,直线PA与x轴交于点A,与y轴交于点C(0,2),且S△AOC=4,直线BD与x轴交于点B,与y轴交于点D,直线PA与直线BD交于点P(2,m),点P在第一象限,连接OP.
(1)求点A的坐标;
(2)求直线PA的函数表达式;
(3)求m的值;
(4)若S△BOP=S△DOP,请你直接写出直线BD的函数表达式.

查看答案和解析>>

同步练习册答案