精英家教网 > 初中数学 > 题目详情

已知一个正多边形的一个内角等于144°,求它的边数.

答案:
解析:

  分析1:多边形内角和定理给出了多边形的边数与内角和之间的联系,可以运用此定理列方程.

  解法1:设所求边数为n,根据多边形内角和定理,得

  (n-2)180=144n,

  解此关于n的方程,得n=10.

  分析2:既然这个多边形的每个内角相等,那么它的每个外角也都相等.

  解法2:设所求的边数为n,由每个内角都等于144°知,每个外角都等于180°-144°,由多边形的外角和为360°,得

  (180-144)n=360,

  n=10.

  评析:解法2比较简便,这是利用了事物之间互相联系的结果,积极进行联想或善于联想,是利用知识间联系的一个重要前提.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),A的一个内角的度数是B的一个内角的度数的
32

(1)试分别确定A、B是什么正多边形?
(2)画出这5个正多边形在平面镶嵌(密铺)的图形(画一种即可);
(3)判断你所画图形的对称性(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题
(1)一幅图案,在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是
12
12

(2)从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为
①②③④
①②③④
.(填写拼图板的代码即可).

(3)已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.
求证:ED∥FB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

科目:初中数学 来源:2009年第7届“学用杯”全国数学知识应用竞赛九年级初赛试卷(A卷)(解析版) 题型:解答题

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

同步练习册答案